If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-18x-420+20=0
We add all the numbers together, and all the variables
3x^2-18x-400=0
a = 3; b = -18; c = -400;
Δ = b2-4ac
Δ = -182-4·3·(-400)
Δ = 5124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5124}=\sqrt{4*1281}=\sqrt{4}*\sqrt{1281}=2\sqrt{1281}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{1281}}{2*3}=\frac{18-2\sqrt{1281}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{1281}}{2*3}=\frac{18+2\sqrt{1281}}{6} $
| X³+4x-40=0 | | |9-6x|=4 | | 5x-3=7x9 | | y=3-2/3*5 | | 3k-10=-2 | | y=3-2/3(5) | | 4a+3a+8=16 | | 5a-4a+6=8 | | 14+5a=12a+1 | | 2a+3=10-3a | | 14m+3m=12 | | 7+3m+m=19 | | 2a+3=9-3a | | 3a-2a+1=2 | | -4(x+7)-45=2-55 | | 5+2g+g=41 | | 2g+g=24 | | 5x-2x-4=5 | | 1/4x^2+1/3x+1/9=0 | | 20=m+8 | | 3=y-18 | | 3•n-10+n=53 | | b=72 | | 5/40=x/8 | | -5n+2n=-2 | | 24+x=53 | | -5+2n=-2 | | 4x^2+28x-82=0 | | m2-8m-10008=0 | | y^2-24y-10=0 | | 5a−9=3+a | | Y^2-10y-10=0 |